Structure and Twinning of $\mathrm{Sr}_{3} \mathbf{C u P t O}_{6}$

By J. L. Hodeau, H. Y. Tu,* P. Bordet, T. Fournier,† P. Strobel and M. Marezio \ddagger
Laboratoire de Cristallographie, CNRS, associé à l'Université J. Fourier, 166X, 38042 Grenoble CEDEX, France

and G. V. Chandrashekhar
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
(Received 12 March 1991; accepted 21 August 1991)

Abstract

$\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ was obtained during the investigation of the $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Cu}-\mathrm{O}$ system in Pt crucibles. The reaction with Pt gives rise to large platelets of mixed phases. The new phase $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ reported here has a well defined composition and its structure is related to that of other Pt^{4+} compounds. The solution and refinement of the structure were based on singlecrystal X-ray diffraction data at room temperature. The symmetry is monoclinic, space group $C 2 / c$ with $Z=4, a=9.317$ (4), $b=9.720$ (4), $c=6.685$ (3) \AA, β $=91.95$ (2) ${ }^{\circ}, V=605.1(8) \AA^{3}, \quad M_{r}=617.49, \quad D_{x}=$ $6.778 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=282.1 \mathrm{~cm}^{-1}, F(000)=1076$, room temperature. Monochromatized $\mathrm{Ag} K \alpha$ radiation (λ $=0.56083 \AA$) was used. The final refinement gave an R factor of 0.048 for 582 independent reflections. Owing to the presence of more than one pseudosymmetry in the lattice of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$, all the crystals were heavily twinned. The possible twinning laws were investigated and a correction which eliminated the effect of twinning was applied. The structure contains chains alternating a PtO_{6} octahedron and a CuO_{4} 'square' which share edges. They are connected by Sr sites in eightfold coordination. The Pt cations are surrounded by a nearly perfect O octahedron and Cu cations by six O atoms arranged as a distorted trigonal prism with four short and two long $\mathrm{Cu}-\mathrm{O}$ distances. The Cu cations are displaced towards one of the rectangular faces of the prism and can be considered to have square coordination. The structure of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ is related to that of trigonal $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$. Chemical analysis of various platelets indicated the presence of intergrowth between $\mathrm{Bi} / \mathrm{Sr} / \mathrm{Cu}$ and $\mathrm{Pt} / \mathrm{Sr} / \mathrm{Cu}$ phases. However, no $\mathrm{Bi} / \mathrm{Pt}$ substitution occurs in any phase. The microanalysis revealed that the surface of the crystal studied by

[^0]X-rays did not contain any Bi . All $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ crystals are twinned either by reticular pseudomerohedry with a pseudo-orthorhombic cell and/or by pseudo-merohedry with a pseudo-rhombohedral cell. A detailed twinning analysis is given; it allows comparison of the symmetry of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ with those occurring in other $M_{4}^{2+} \mathrm{PtO}_{6}$ compounds.

Introduction

The $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ system has been studied extensively because it includes the series of the superconductors $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{n-1} \mathrm{Cu}_{n} \mathrm{O}_{x}$ (Maeda, Tanaka, Fukutomi \& Asano, 1988; Akimitsu, Yamazaki, Sawa \& Fujiki, 1988; Michel, Hervieu, Borel, Grandin, Deslandes, Provost \& Raveau, 1987; Roth, Rawn, Burton \& Beech, 1990a). Various phasediagram studies showed that a large number of intermediate compounds exist in the $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{SrO}-$ CuO triangular composition (Roth, Rawn, Burton \& Beech 1990a,b; Saggio, Sujata, Hahn, Hwu, Poeppelmeier \& Mason, 1989; Ikeda, Ito, Shimomura, Oue, Inaba, Hiroi \& Takano, 1989; Roth, Rawn \& Bendersky, 1990). In addition, crystal growth attempts in Pt crucibles showed that at high temperatures a reaction with the container could occur, giving rise to Pt -containing compounds (Strobel, Kelleher, Holtzberg \& Worthington, 1988). It is this chemical attack on the Pt crucibles which led to the investigations of the possible reactions between Pt and the alkaline-earth oxide (Randall \& Katz, 1959; Randall \& Ward, 1969). Generally, Pt-based oxides contain either Pt^{2+} in fourfold planar coordination or octahedral Pt^{4+} cations. For example, the oxides $M_{x} \mathrm{Pt}_{3} \mathrm{O}_{4}$ contain square-planar PtO_{4} groups with $\mathrm{Pt}^{2+}-\mathrm{O}$ distances of about $2.00 \AA$ (Schwartz \& Prewitt, 1984; Schwartz, Prewitt, Shannon, Corliss, Hastings \& Chamberland, 1982). Several Pt^{4+} oxides with formulae $M_{2}^{+} \mathrm{PtO}_{3}$ and $M_{4}^{2+} \mathrm{PtO}_{6}$ can also be synthesized; the octahedrally coordinated PtO_{6} groups share faces, edges or can be isolated (Randall \& Katz, 1959; Schwartz \& Prewitt, 1984; Ben-Dor,

Suss \& Cohen, 1983; Chamberland \& Silverman, 1979; Schneider \& McDaniel, 1969). Mixed-valence ternary Pt oxides $M \mathrm{Pt}_{3} \mathrm{O}_{6}$ present both planar PtO_{4} groups ($\mathrm{Pt}-\mathrm{O}$ distances $\approx 1.94-1.99 \AA$) and octahedral PtO_{6} groups $(\mathrm{Pt}-\mathrm{O}$ distances $\approx 2.00-2.03 \AA)$ (Schwartz, Parise, Prewitt \& Shannon, 1983). In these oxides, the Pt sites are quite rigid, the $\mathrm{Pt}-\mathrm{O}$ distances vary over a small range and only small angular distortions can occur. The main differences concern the stacking of planar PtO_{4} groups and octahedral PtO_{6} ones.

During the crystal growth studies of $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Cu}-\mathrm{O}$ compounds, we observed the formation of single crystals different from those expected. These crystals having a platelet habit were found to be either $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$, a known trigonal compound (Randall \& Katz, 1959; Ben-Dor et al., 1983) or a new phase closely related to $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$, but containing Cu as a major consitutuent. We report the structure determination of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$, a compound not mentioned in the review article by Schwartz \& Prewitt (1984).

Fig. 1. SEM micrographs of a polished multiphase platelet (entire platelet and enlargement of the same platelet with a different contrast). The bright zones correspond to $\mathrm{Bi}_{2.01(5)}{ }^{-}$ $\mathrm{Sr}_{1.97(5)} \mathrm{Cu}_{1.02(7)} \mathrm{O}_{x}$, the light grey to $\mathrm{Bi}_{1.52(3)} \mathrm{Sr}_{2.15(2)} \mathrm{Cu}_{1.33(3)} \mathrm{O}_{x}$, the dark grey to $\mathrm{Sr}_{3.08{ }_{(3)}} \mathrm{Cu}_{0.99(2)} \mathrm{P}_{0.92(1)} \mathrm{O}_{x}$ and the black to CuO .

We compared its structure with that of other ternary Pt oxides. Since all $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ crystals are twinned, a study of the twinning is also presented.

Preparation and chemical analysis

Stoichiometric $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CuO}_{6}$ mixtures with $50 \% \mathrm{CuO}$ excess, held in Pt crucibles for several hours at 1375 K , then cooled at $1-2 \mathrm{~K} \mathrm{~h}^{-1}$, yielded large hexagonal plate-shaped crystals corresponding to $\mathrm{Pt} / \mathrm{Bi}-\mathrm{Sr}-\mathrm{Cu}-\mathrm{O}$ mixed phases. An SEM/EDX characterization of these platelets gave four well defined compositions in the same 'crystal'. These compositions are (in Fig. 1, from dark to light) (a) CuO , (b) $\mathrm{Sr}_{3.08(3)} \mathrm{Cu}_{0.99(2)} \mathrm{Pt}_{0.92(1)} \mathrm{O}_{x}$, (c) $\mathrm{Bi}_{1.52(3)^{-}}$ $\mathrm{Sr}_{2.15(2)} \mathrm{Cu}_{1.33(3)} \mathrm{O}_{x}$ and (d) $\mathrm{Bi}_{2.01(5)} \mathrm{Sr}_{1.97(5)} \mathrm{Cu}_{1.02(7)} \mathrm{O}_{x}$. The numbers in parentheses are the estimated errors on the last decimal figure. These values are the results of several reproducible analyses. From previous studies of the $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Cu}-\mathrm{O}$ system (Saggio et al., 1989; Ikeda et al., 1989; Roth et al., 1990, 1990a;

(d^{\prime})
Fig. 2. EDX composition maps of a 'single' crystal characterized by the X-ray precession method: (a) Bi content, (b) Pt content, (c) Sr content, (d) and (d^{\prime}) entire crystal.

Strobel et al., 1988), the (c) and (d) phases were identified as the $\mathrm{Bi}_{2} \mathrm{Sr}_{3} \mathrm{Cu}_{2} \mathrm{O}_{8}$ (Ikeda et al., 1989; Roth et al., 1990a) and $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CuO}_{6}$ compounds (Saggio et al., 1989; Roth et al., 1990). Nearly all the 'crystals' contained the (b), (c) and (d) compositions (Fig. 2), but the X-ray precession patterns of these multiphased 'crystals' were similar to those of 'pure' $\mathrm{Sr} / \mathrm{Cu} / \mathrm{Pt} / \mathrm{O}$ samples. For example, their lattice parameters were equal (within experimental errors) to those of the $\mathrm{Sr} / \mathrm{Cu} / \mathrm{Pt} / \mathrm{O}$ samples and they seemed to belong to the trigonal system. Probably, only the Pt compound is well crystallized while the Bi phases are present in these platelets as amorphous inclusions. As shown in Fig. 1, $\mathrm{Bi}_{1.5} \mathrm{Sr}_{2.15} \mathrm{Cu}_{1.3} \mathrm{O}_{x}$ and $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CuO}_{x}$ are distinct, intimately mixed phases, which probably grew simultaneously with $\mathrm{Sr}_{3} \mathrm{CuPtO}_{*}$ from the high-temperature liquid phase.

Symmetry and twinning

Guinier powder patterns (Table 1) are indexed with a C-centered monoclinic cell with parameters $a_{0}=$ 9.317 (4) $, \quad b_{0}=9.720(4), \quad c_{0}=6.685$ (3) $\AA, \quad \beta_{0}=$ 91.95 (2) (Tu, Hodeau, Bordet, Chandrashekhar, Fournier, Strobel \& Marezio, 1990). As these 'crystals' can contain either Bi-based or Pt-based phases, the powder pattern reported in Table 1 was obtained by grinding only one 'crystal' containing Pt. This cell indexes 56 of the 59 observed reflections ($I>5 \% I_{\max }, R=0.1 \%$), with absences suggesting $C 2 / c$ space-group symmetry. The three unindexed reflections ($d=3.455,2.697$ and $2.526 \AA$) have relative intensities less than 10% of the maximum intensity in the pattern and are ascribed to impurities. Investigations of several crystals with a precession camera and Mo $K \alpha$ radiation (Fig. 3) indicate that the crystals of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{x}$ have pronounced pseudorhombohedral metric symmetry as shown by the equivalent cell parameters in Table $2\left(a_{2} \simeq 6.716 \AA\right.$, $\alpha_{2} \simeq 91.7^{\circ}$), and is also remotely pseudo-cubic, owing to a rhombohedral angle of roughly $92^{\circ}\left(a_{1} \simeq\right.$ $6.713 \AA$). The above rhombohedral cell can also be described with the corresponding hexagonal cell (a_{3} $\simeq 9.638, c_{3} \simeq 11.281 \AA$) or its equivalent orthohexagonal cell $\left(a_{4} \simeq 9.599, b_{4} \simeq 16.776, c_{4} \simeq 11.281 \AA, \beta_{4}\right.$ $\approx 90.84^{\circ}, \quad C$-centered orthorhombic). Pseudoorthorhombic, pseudo-rhombohedral and pseudocubic indexings of our powder pattern are also given in Table 1. Since the crystal lattice of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{x}$ is consistent with several pseudo-symmetry sublattices, multiple twin formation is very probable.

Since β_{0} is almost 90°, the $C 2 / c$ lattice $\left(a_{0}, b_{0}, c_{0}\right.$, β_{0}) is consistent with the pseudo-orthorhombic lattice $\left(a_{0}, b_{0}, c_{0}\right)$. This gives rise to the possibility of twinning by pseudo-merohedry (Friedel, 1964), controlled by the mmm pseudo-symmetry of lattice Cmcm . The twin laws predicted by the theory are
$2 / \mathrm{m}, 2 / \mathrm{m}$. The two mirror planes are parallel to the $(100)_{0}$ and $(001)_{0}$ planes and the normals to these planes are the two pseudo-twofold axes. Since the operations of the twofold axes are indistinguishable from the operations of the corresponding equivalent planes, only the planes will be considered in the following discussion.
The pronounced rhombohedral pseudo-symmetry is also a pseudo-symmetry from the structural point of view, as will be shown in Description of the structure. Accordingly, the missing rhombohedral symmetry elements can be twin operations, probably with domain formation and are indeed seen on most samples. For those twins by pseudo-merohedry (Friedel, 1964) all reflections due to the different individuals are nearly superimposed because twinning approximately restores all lattice nodes with a slight obliquity of $\sim 0.8^{\circ}$. The twin laws predicted by the theory are the pseudo-threefold axis $[001]_{3}^{120}$ \{which corresponds to $\longleftrightarrow[111]_{2}^{120}$ and $\leftrightarrow[101]_{0}^{120}$ in the $\left(a_{2}, b_{2}, c_{2}\right)$ and $\left(a_{0}, b_{0}, c_{0}\right)$ lattices $\}$. This twin law produces spot splittings which are observed in the precession pattern (see Fig. 3a).

The ($a_{0}, b_{0}, c_{0}, \beta_{0}$) lattice is also consistent with the pseudo-orthohexagonal sublattice ($a_{4}, b_{4}, c_{4}, \alpha_{4}=$ 89.93, $\beta_{4}=89.88, \gamma_{4}=90.84^{\circ}$), which has a triple unit-cell volume; the corresponding possibility of twinning is by reticular pseudo-merohedry (Friedel, 1964). The twin laws predicted by the theory in this case are the symmetry elements of this lattice, namely $2 / m, 2 / m, 2 / m \quad\left[100_{4} \leftrightarrow(\overline{1} 12)_{0}\right.$, $(010)_{4} \leftrightarrow(\overline{1} 32)_{0}, \quad(001)_{4} \leftrightarrow(101)_{0}$ are the mirror planes and the normals to these planes are the pseudo-twofold axes]. Since two angles of this lattice are very close to 90°, the most probable twinning would be controlled by pseudo-symmetries of the monoclinic lattice ($a_{4}, b_{4}, c_{4}, \alpha_{4}=90, \beta_{4}=90, \gamma_{4}=$ 90.84°). The precession patterns given in Figs. 4(a) and $4(b)$ show this pseudo-orthorhombic cell ($a \simeq$ $9.599, b \simeq 16.776, c \simeq 11.281 \AA, \alpha \simeq 90, \beta \simeq 90, \gamma \simeq$ 90.84°). The two twinned individuals controlled by the $(001)_{4}$ twin law can be observed in Fig. 4(a).

Intensity data collection

Since all 'crystals' were multi-twinned those with the fewest number of twin individuals were selected by the use of a precession camera for the X-ray data collection. A large fraction of the twin individuals were eliminated by grinding the 'crystals' into spheres. Owing to the habit and the anisotropic hardness of the original crystals, the samples had ellipsoidal shapes after grinding. The size of the ellipsoid used for the intensity data collection was r_{1} $=0.16, r_{2}=0.12, r_{3}=0.07 \mathrm{~mm}$. A chemical analysis performed on the surface of this ellipsoid gave a composition close to $\mathrm{Sr}_{3} \mathrm{CuPtO}_{x}$, i.e. without Bi .

Table 1. Powder data

		Monoclinic cell*				'Orthorhombic' cell \dagger				Hexagonal cell ${ }_{+}^{+}$				Rhombohedric cell§				Cubic cell ${ }^{-}$			
$d_{\text {obs }}$	$l_{\text {obs }}$	h	k	l	$d_{\text {cak }}$	h	k	l	$d_{\text {calc }}$	h	k	l	$d_{\text {calc }}$	h	k	l	$d_{\text {calc }}$	h	k	l	$d_{\text {cak }}$
4.879	12	0	2	0	4.860	1	-3	0	4.860	1	1	0	4.819	1	0	1	4.819	1	0	-1	4.747
4.805	20	1	1	-1	4.799	-1	3	0	4.799	2	-1	0	4.819	1	-1	0	4.819	1	-1	0	4.747
4.698	23	1	1	1	4.682	1	-1	2	4.680	0	1	2	4.673	1	1	0	4.674	1	1	0	4.747
4.667	20	2	0	0	4.656	-1	-1	2	4.661	1	$\cdots 1$	2	4.673	1	0	1	4.674	1	0	1	4.747
3.455	4																				
3.371	8	2	2	0	3.362	0	4	2	3.364	2	0	2	3.355	2	0	0	3.355	2	0	0	3.356
3.029	10	2	2	--1	3.033	1	5	1	3.035	3	1	1	3.038	2	$\cdots 1$	0	3.038	2	-1	0	3.002
2.978	48	2	2	1	2.974	1	- 3	3	2.974	1	1	3	2.965	2	1	0	2.965	2	1	0	3.002
		3	1	0	2.957	-1	-3	3	2.960	2	-1	3	2.965	2	0	1	2.965	2	0	1	3.002
		1	1	2	2.963	2	0	3	2.960	-1	2	3	2.965	1	2	0	2.965	1	2	0	3.002
2.799	100	1	3	-1	2.794	0	-6	0	2.794	3	0	0	2.782	2	-1	-1	2.782	2		- 1	2.741
2.762	60	2	0	2	2.759	- 3	3	0	2.759	3	-3	0	2.782	1	-2	1	2.782	1	-2	1	2.741
		1	3	1	2.770	2	4	2	2.770	1	2	2	2.753	2	1	-1	2.753	2	1	- 1	2.741
		0	2	2	2.753	1	- 5	-2	2.751	3	-1	. 2	2.753	1	-2	-1	2.753	1	-2	-1	2.741
2.740	5	3	1	-1	2.737	2	-4	2	2.739	3	2	2	2.753	2	1	1	2.753	2	. 1	1	2.741
2.697	9																				
2.675	16	3	1	1	2.672	0	- 2	4	2.673	1	0	4	2.672	2	1	1	2.672	2	1	1	2.741
		2	0	2	2.671	1	1	4	2.669	-1	1	4	2.672	1	2	1	2.672	1	2	1	2.741
2.526	3																				
2.405	3	2	2	2	2.399	2	6	0	2.399	4	- 2	0	2.409	2	- 2	0	2.409	2	2	0	2.373
2.342	33	2	2	2	2.341	2	2	4	2.340	0	2	4	2.337	2	2	0	2.337	2	2	0	2.373
2.327	20	4	0	0	2.328	-2	-2	4	2.331	2	- 2	4	2.337	2	0	2	2.337	2	0	2	2.373
2.285	9	0	4	-1	2.284	1	-7	1	2.283	3	1	1	2.268	2	-1	-2	2.268	2		-2	2.238
2.254	6	3	1	-2	2.251	-3	5	1	2.252	4	- 3	1	2.268	2	2	1	2.268	2	2	1	2.238
2.157	11	2	4	0	2.154	1	-7	2	2.155	3	1	2	2.142	3	0	-1	2.142	3	0	1	2.123
2.142	15	3	3	-1	2.141	1	7	2	2.142	4	1	2	2.142	3	-1	0	2.142	3	1	0	2.123
2.131	8	1	1	3	2.130	-3	5	2	2.128	4	- 3	-2	2.142	1	3	0	2.142	1	- 3	0	2.123
2.112	20	3	3	1	2.109	1	- 5	4	2.110	2	1	4	2.103	3	1	0	2.103	3	1	0	2.123
2.101	35	4	2	0	2.099	-1	-5	4	2.101	3	$\cdots 1$	4	2.103	3	$1)$	1	2.103	3	0	1	2.123
		1	1	3	2.099	3	1	4	2.096	-2	3	4	2.103	1	3	0	2.103	1	3	0	2.123
2.041	18	2	4	1	2.041	2	-6	3	2.041	2	2	3	2.029	3	1	1	2.029	3	1	-1	2.024
2.027	30	0	2	- 3	2.025	2	6	-3	2.023	4	2	3	2.029	1	- 3	-1	2.029	1	3	1	2.024
2.020	15	4	2	-1	2.021	2	6	3	2.023	4	-2	3	2.029	3	1	1	2.029	3	- 1	1	2.024
1.968	8	0	4	-2	1.965	0	-8	- 2	1.964	4	0	2	1.957	2	-2	- 2	1.957	2	-2	2	1.938
1.941	2	4	0	-2	1.941	-4	-4	2	1.943	4	4	2	1.957	2	-2	2	1.957	2	2	2	1.938
1.904	6	1	5	0	1.903	2	-8	1	1.903	3	2	1	1.888	3	0	-- 2	1.888	3	0	2	1.862
1.879	4	4	0	2	1.880	0	0	6	1.880	0	0	6	1.880	2	2	2	1.880	2	2	2	1.938
1.837	6	2	2	3	1.836	3	-1	5	1.834	-1	3	5	1.835	2	3	0	1.835	2	3	0	1.862
		1	5	-1	1.834	1	- 9	0	1.834	4	1	0	1.821	3	1	2	1.821	3	- 1	-2	1.794
		5	1	0	1.829	-2	-4	5	1.831	3	2	5	1.835	3	0	2	1.835	3	0	2	1.862
1.828	6	1	5	1	1.827	3	- 7	2	1.827	2	3	2	1.813	3	1	-2	1.813	3	1	2	1.794
		2	4	-2	1.824	-1	-9	0	1.824	5	1	0	1.821	3	-2	-1	1.821	3	2	1	1.794
1.809	4	3	1	\cdots	1.807	4	6	0	1.807	5	-4	0	1.821	2	-3	1	1.821	2	-3	1	1.794
1.800	5	2	4	2	1.798	3	-5	4	1.797	1	3	4	1.789	3	2	1	1.789	3	2	-1	1.794
1.793	5	1	3	3	1.791	4	2	4	1.790	1	4	4	1.789	2	3	-1	1.789	2	3	1	1.794
1.781	4	5	1	-1	1.779	3	5	4	1.781	4	3	4	1.789	3	1	2	1.789	3	-1	2	1.794
1.753	26	3	1	3	1.752	2	0	6	1.751	1	2	6	1.752	2	3	1	1.752	2	3	1	1.794
		4	2	2	1.753	1	-3	6	1.753	1	1	6	1.752	3	2	1	1.752	3	2	1	1.794
		5	1	1	1.749	1	3	6	1.751	2	- 1	6	1.752	3	1	2	1.752	3	1	2	1.794
1.680	2	4	4	0	1.681	0	-8	4	1.682	4	0	4	1.677	4	0	0	1.677	4	0	0	1.678
1.671	2	0	0	-4	1.670	4	4	4	1.668	4	4	4	1.677	0	4	0	1.677	0	-4	0	1.678
1.650	12	3	5	0	1.648	1	9	3	1.648	4	I	3	1.639	4	0	1	1.639	4	0	1	1.628
		1	5	2	1.649	4	6	3	1.648	1	4	3	1.639	3	2	2	1.639	3	2	2	1.628
1.621	9	0	6	0	1.620	3	-9	0	1.620	3	3	0	1.606	3	0	-3	1.606	3	0	-3	1.582
1.601	14	3	3	3	1.600	- 3	- 9	0	1.600	6	- 3	0	1.606	3	- 3	0	1.606	3	- 3	0	1.582
1.594	4	3	5	1	1.593	2	8	4	1.593	3	2	4	1.584	4	1	1	1.584	4	1	1	1.582
1.580	22	5	3	-1	1.580	- 2	-8	4	1.582	5	2	4	1.584	4	- 1	1	1.584	4		1	1.582
		0	2	-4	1.580	3	. 7	-4	1.578	5	3	4	1.584	I	4	1	1.584	1	-4	-1	1.582
1.562	3	2	4	3	1.561	-2	10	-1	1.560	6	2	- 1	1.562	3	3	1	1562	3	-3	-1	1.540
1.552	4	4	2	3	1.552	-4	-8	1	1.552	6	4	1	1.562	3	3	1	1.562	3	-3	1	1.540
1.532	6	2	6	0	1.530	2	10	2	1.530	4	2	2	1.519	4	0	-2	1.519	4	0	-2	1.501
1.517	2	4	4	2	1.517	-2	- 10	2	1.517	6	-- 2	2	1.519	4	2	0	1.519	4	-2	0	1.501
1.512	3	2	2	4	1.511	-4	-8	-2	1.510	6	4	2	1.519	2	4	0	1.519	2	-4	0	1.501
1.488	10	3	5	-2	1.488	-1	11	1	1.489	6	-1	1	1.486	4	-- 2	-1	1.486	4	- 2	-1	1.465
		4	4	2	1.487	2	- 6	6	1.487	2	2	6	1.482	4	2	0	1.482	4	2	0	1.501
1.482	7	2	2	4	1.481	4	0	6	1.480	-2	4	6	1.482	2	4	0	1.482	2	4	0	1.501
1.479	5	6	2	0	1.478	-2	-6	6	1.480	4	-2	6	1.482	4	0	2	1.482	4	0	2	1.501
1.458	2	0	6	-2	1.458	1	11	2	1.457	5	1	2	1.449	3	-- 2	-3	1.449	3	- 2	- 3	1.431
1.453	3	1	5	-3	1.452	-1	- 11	-2	1.451	6	-1	-2	1.449	3	3	2	1.449	3			1.431
1.443	2	1	5	3	1.442	5	5	4	1.441	0	5	4	1.437	3	3	-2	1.437	3	3	-2	1.431
1.428	5	6	0	- 2	1.426	-5	-5	4	1.428	5	-5	4	1.437	3	- 2	3	1.437	3	-2	3	1.431
1.398	10	2	6		1.397		- 12	0	1.397	6	0	0	1.391	4	-2	-2	1.391	4			1.370
1.391	5	5	1		1.391	1		8	1.391	0	1	8	1.390	3	3	2	1.390	3	3	2	1.431
		6	0	2	1.389	-1	-1	8	1.390	1	-1	8	1.390	3	2	3	1.390	3	2	3	1.431

* Monoclinic cell, $C 2 / c, a_{0}=9.317$ (4), $b_{0}=9.720$ (4), $c_{0}=6.685$ (3) $\AA, \beta_{0}=91.95$ (2)
\dagger Monoclinic or 'orthorhombic' cell, $a_{4}=9.599, h_{4}=16.766, c_{4}=11.281 \AA, \gamma_{4}=90.84$.
\ddagger Hexagonal cell, $R \overline{3} c, a_{3}=9.638, b_{3}=9.638, c_{3}=11.281 \AA, \gamma_{3}=120$.
§ Rhombohedric cell, R3c, $a_{2}=6.716 \AA, \alpha_{2}=91.70^{\circ}$.
- Cubic cell, $a_{1}=6.713 \AA$.

Fig. 3. Precession photographs obtained with Zr -filtered $\mathrm{Mo} K \alpha$ radiation on a rhombohedral-shaped crystal: (a) zero layer of the $[001]_{3}$ or $[111]_{2}$ zone, reflections of different individuals twinned by the rhombohedral pseudo-merohedry are nearly overlapped, (b) second layer of the $[001]_{3}$ or $[111]_{2}$ zone, (c) zero layer of the $[11 \overline{2}]_{2}$ zone, this pattern is the same as that of $(b),(d)$ zero layer of the $[1 \overline{1} 0]_{2}$ zone, this pattern contains the pseudo-threefold axis, (e) zero layer of the $[001]_{2}$ zone and (f) zero layer of the $[110]_{2}$ zone.

Table 2. Transformation matrices between pseudosymmetric lattices and the original unit cell of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$
$a_{0}=9.317(4), b_{0}=9.720(4), c_{0}=6.685(3) \AA, \alpha_{0}=90, \beta_{0}=91.95(2), \gamma_{0}=90^{\circ}$
Pseudo-cubic or pseudo-rhombohedral sublattice

$$
\begin{gathered}
\left|\begin{array}{c}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right|=\left|\begin{array}{rrr}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1 \\
\frac{1}{2} & -\frac{1}{2} & 0
\end{array}\right|\left|\begin{array}{c}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right| \\
a_{2}=6.732, b_{2}=6.685, c_{2}=6.732 \AA, \alpha_{2}=91.35, \beta_{2}=92.42, \gamma_{2}=91.35^{\circ}
\end{gathered}
$$

Pseudo-rhombohedral sublattice, hexagonal setting

$a_{3}=9.599, b_{3}=9.599, c_{3}=11.281 \AA, \alpha_{3}=89.88, \beta_{3}=90.12, \gamma_{3}=119.16^{\circ}$
Pseudo-monoclinic sublattice (close to orthorhombic)

$a_{4}=9.599, b_{4}=16.766, c_{4}=11.281 \AA, \alpha_{4}=89.93, \beta_{4}=89.88, \gamma_{4}=90.84^{\circ}$

The ellipsoid, which was nonetheless found to be twinned, was mounted on an automatic Nonius four-circle diffractometer equipped with a graphite monochromator and $\mathrm{Ag} K \alpha$ radiation. Longexposure precession photographs showed that it consisted of only two individuals (Figs. $4 a$ and $4 b$) generated by the pseudo-symmetry of the (a_{4}, b_{4}, c_{4}) pseudo-orthohexagonal sublattice. The cell parameters of this lattice were determined from the same single crystal mounted on the automatic diffractometer for the intensity data collection. The leastsquares refinement applied to 20 reflections with large Bragg angle gave $a_{4}=9.598$ (6), $b_{4}=16.770$ (7), $c_{4}=11.280(6) \AA, \alpha_{4}=90, \beta_{4}=90, \gamma_{4}=90.81$ (5) ${ }^{\circ}$. The $C 2 / c$ cell parameters, deduced from these values with the appropriate matrix transformation, are $a_{0}=$ $9.328, b_{0}=9.720, c_{0}=6.678 \AA, \quad \alpha_{0}=90.02, \quad \beta_{0}=$ $92.01, \gamma_{0}=89.98^{\circ}$. They are in good agreement with those obtained from the powder pattern.
The intensities were collected ($\omega-2 \theta$ scans) using the pseudo-orthohexagonal cell $\left(a_{4}, b_{4}, c_{4}\right)$, which allowed the reflections from the two twin individuals to be easily measured. To apply the twin correction, all possible reflections of both individuals were measured. Three standard reflections were monitored to keep a running check on the crystal orientation. The corresponding correction factor varied in the range $0.969-1.003$. Lorentz and polarization corrections were applied together with an empirical absorption correction for whose application a transmission curve was deduced from ψ-scan measurements ($\mu=$ $282.1 \mathrm{~cm}^{-1}$, the transmission factor ranged between 99.61 and 45.01%).

The structural refinements were based on the intensities of the strongest individual after the twinning correction for overlapping had been
applied. Overlapping occurs only for those reflections with $l=3 n$. The two A and B individuals are related by the pseudo-mirror $(001)_{4}$. The total intensity of an $h k l$ node is given by $I_{\text {total }}(h k l)_{4}=I_{A}(h k l)_{4}+$ $I_{B}(h k)_{4}$. In the non-zero levels with $l_{4}=3 n$, approximate twin-free intensities can be obtained, If R is the volume ratio between the B and A individuals, one can write $I_{\text {total }}(h k l)_{4}=I_{A}(h k l)_{4}+R I_{A}(h k l)_{4}$. As the twin fractions are different from 50%, simple arithmetic allows the separation of measured intensities at $h k l$ and $h k l$ into corresponding twin-free intensities.

Fig. 4. Precession photograph obtained with Zr -filtered Mo $\mathrm{K} \alpha$ radiation on the crystal used for the data collection: (a) zero layer of the $[\overline{2} 01]_{4}$ zone, showing the twinning by reticular pseudo-merohedry and (b) zero layer of the $[010]_{4}$ zone. The plane of the figure is the twinning plane and reflections of both individuals are almost exactly overlapped.

Table 3. Positional and thermal parameters for $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$

	x	y	z	β_{11} or $\boldsymbol{B}_{\text {iso }}$	$\boldsymbol{\beta}_{22}$	$\beta_{3,3}$	β_{12}	β_{13}	β_{23}
Pt	$\frac{1}{4}$	1	$!$	0.00076 (9)	0.00047 (8)	0.0012 (2)	0.0001 (1)	0.0001 (2)	0.0004 (2)
Cu	0.0	0.2987 (4)	$!$	0.0012 (3)	0.0029 (3)	0.0015 (6)	0.0	-0.0005 (8)	0.0
$\mathrm{Sr}(1)$	0.0	0.8968 (2)	$\stackrel{1}{4}$	0.0005 (2)	0.0006 (2)	0.0018 (4)	0.0	0.0002 (5)	0.0
$\mathrm{Sr}(2)$	0.3145 (2)	0.0727 (2)	0.1211 (2)	0.0009 (1)	0.0008 (1)	0.0012 (3)	-0.0007 (3)	-0.0001 (4)	0.0001 (4)
O(1)	0.288 (1)	0.815 (1)	0.285 (2)	0.4 (2)					
O(2)	0.058 (1)	0.341 (1)	0.537 (2)	0.6 (2)					
O(3)	0.141 (1)	0.073 (1)	0.427 (2)	0.7 (2)					

Table 4. Thermal data for $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$

		R.m.s. (\AA)	Angles (\%) with		
			x	y	z
Pt	r_{1}	0.059	29.6	69.4	69.7
	r_{2}	0.055	118.5	64.9	39.7
	r_{3}	0.043	97.1	33.4	122.4
Cu	r_{1}	0.118	89.9	0.0	90.0
	r_{2}	0.075	22.6	90.1	112.6
	r_{3}	0.055	67.4	90.0	22.6
$\mathrm{Sr}(1)$	r_{1}	0.064	83.9	89.9	6.1
	r_{2}	0.055	88.3	1.7	90.3
	r_{3}	0.049	6.3	91.7	96.1
$\mathrm{Sr}(2)$	r_{1}	0.074	44.0	132.8	98.3
	r_{2}	0.051	80.4	91.8	9.8
	r_{3}	0.048	47.6	42.8	95.3
$\mathrm{O}(1)$	r	0.074	-		-
O(2)	r	0.085	-	-	
$\mathrm{O}(3)$	r	0.091	-	--	\cdots

From the A / B intensity ratio for the nonoverlapped reflections $(l \neq 3 n)$, it was determined that the two individuals occupied 78.7 and 21.3% of the crystal volume, respectively ($R=0.27$). All the reflections, included in the entire Ewald sphere for 0 $<\sin \theta / \lambda<0.61 \AA \quad(h-12 \rightarrow 12, k-21 \rightarrow 21, l-14$ $\rightarrow 14$), were measured. The large pseudoorthorhombic cell $\left(a_{4}, b_{4}, c_{4}\right)$ controlling the twinning was used. From 10627 measured reflections, 3517 had $I>2 \sigma(I)$ and were considered as observed. Of these observed reflections, 766 belong to both individuals while 1513 do not overlap and belong to the larger A individual. The average difference (2.1%) in intensity between Friedel pairs was found to be larger than expected. This was due to either the absence of the symmetry center from the structure or to an inaccurate absorption correction. As stated above, the shape of the sample was an irregular ellipsoid containing two individuals whose domains are distributed at random, thus the absorption varied with the orientation. We believe that the most probable cause of the difference between the intensity of Friedel pairs was due to the inaccuracy of the absorption correction. After averaging in the monoclinic point group $2 / m$, the total number of independent reflections was 582 and the agreement factor of averaging among equivalent reflections was 2.6\%.

The structure was determined by the use of threedimensional Patterson series as well as direct methods. Refinements were carried out using the SDP package (Enraf-Nonius, 1979). The f curves for neutral Sr, Cu and Pt were taken from International

Tables for X-ray Crystallography (1974, Vol. IV). The anomalous-dispersion coefficients of Cromer \& Liberman (1970) were used. Various weighting schemes were tried and the unit-weight scheme was found to give the best results as it took into account the weak deformation from the trigonal average structure.

Although the reflections related by the monoclinic symmetry had the same intensity, structural refinements with a triclinic pseudo-cubic cell $\left(a_{2}, b_{2}\right.$, c_{2}) were tried and yielded $R=0.053, w R=0.058$ for the 1086 independent reflections. The atomic positions related by the $2 / c$ symmetry elements and transformed in the (a_{0}, b_{0}, c_{0}) cell were within the respective standard deviations. Very weak reflections with $I<10^{-3} I_{\text {max }}$, at low Bragg angles, were not taken into account by this cell. Refinements in a

Fig. 5. Projection of the structure along the $[001]_{0}$ or $[010]_{2}$ direction, showing the coordinations of Pt and Cu sites in $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$. Only the $\mathrm{O}-\mathrm{O}$ bonds belonging to the PtO_{6} octahedra and CuO_{6} trigonal prisms are drawn. Pt black full circles; Cu grey full circles; $\mathrm{Sr}(1,2)$ hatched circles; $\mathrm{O}(1,2,3)$ small open circles.

Table 5. Distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$

	$2.028(14)$	$\times 2$	$\mathrm{Cu}-\mathrm{O}(1)$	$2.007(14)$	$\times 2$
$\mathrm{Pt}-\mathrm{O}(1)$	$2.016(15)$	$\times 2$	$\mathrm{Cu}-\mathrm{O}(2)$	$2.017(14)$	$\times 2$
$\mathrm{Pt}-\mathrm{O}(2)$	$2.046(15)$	$\times 2$	$\mathrm{Cu}-\mathrm{O}(3)$	$2.800(15)$	$\times 2$
$\mathrm{Pt}-\mathrm{O}(3)$					
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(2)$	98.40	$\times 2$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	96.10	$\times 2$
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(2)$	81.60	$\times 2$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	82.08	$\times 2$
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(3)$	91.81	$\times 2$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	117.61	$\times 2$
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(3)$	88.19	$\times 2$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	70.07	$\times 2$
$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{O}(3)$	92.10	$\times 2$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3)$	131.87	$\times 2$
$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{O}(3)$	87.90	$\times 2$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3)$	69.48	$\times 2$
$\mathrm{Sr}(1)-\mathrm{O}(1)$	$2.798(14)$	$\times 2$	$\mathrm{Sr}(2)-\mathrm{O}(1)$	$2.751(14)$	
$\mathrm{Sr}(1)-\mathrm{O}(2)$	$2.775(15)$	$\times 2$	$\mathrm{Sr}(2)-\mathrm{O}(1)$	$2.502(14)$	
$\mathrm{Sr}(1)-\mathrm{O}(3)$	$2.443(15)$	$\times 2$	$\mathrm{Sr}(2)-\mathrm{O}(1)$	$2.622(14)$	
$\mathrm{Sr}(1)-\mathrm{O}(3)$	$2.585(15)$	$\times 2$	$\mathrm{Sr}(2)-\mathrm{O}(2)$	$2.775(15)$	
			$\mathrm{Sr}(2)-\mathrm{O}(2)$	$2.503(15)$	
			$\mathrm{Sr}(2)-\mathrm{O}(2)$	$2.676(14)$	
			$\mathrm{Sr}(2)-\mathrm{O}(3)$	$2.646(15)$	
		$\mathrm{Sr}(2)-\mathrm{O}(3)$	$2.480(15)$		

Table 6. Bond strengths and valences

				Total
	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	valence
Pt	2×0.669	2×0.69	2×0.637	3.992
Cu	2×0.412	2×0.401	2×0.048	1.722
$\mathrm{Sr}(1)$	2×0.159	2×0.169	$2 \times(0.415+0.283)$	2.052
$\mathrm{Sr}(2)$	$(0.181+0.354+0.256)(0.169+0.353+0.221)$	$(0.240+0.376)$	2.150	
Total valence 2.031	2.003	1.999	12.066	

face-centered triclinic space group with a larger cell were tried but the results were not conclusive. The refinement of the average structure in the space group $R \overline{3} c$ with the rhombohedral cell, $\left(a_{2}, b_{2}, c_{2}\right)$ or $\left(a_{3}, b_{3}, c_{3}\right)$ ($R \simeq 24 \%$), was totally inconclusive. The best refinement was carried out with the monoclinic cell $\left(a_{0}, b_{0}, c_{0}\right)$ and the space group $C 2 / c$. The final full-matrix least-squares refinement (based on F) was carried out with the space group $C 2 / c$ and 582 independent reflections. The scale factor, 14 positional parameters, 20 anisotropic thermal parameters for the cations, three isotropic thermal parameters for the anions and the isotropic secondary-extinction parameter $\left[g=3.0(3) \times 10^{-7}\right.$] were varied simultaneously. The R factors were $R=0.048, w R=$ 0.054 , with maximum $\Delta / \sigma=0.01$. The corresponding positional and thermal parameters are given in Table 3. The maximum peak height in the difference Fourier maps was $1.57 \mathrm{e} \AA^{-3}$. The chemical formula was found to be $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$.

When occupancy factors were varied during the refinement, only those of Pt and Cu decreased to 0.90 and 0.95 , respectively, but the R and $w R$ factors decreased only slightly to 0.047 and 0.052 . The difference Fourier maps calculated after the refinements with isotropic thermal factors in space group $C 2 / c$ showed weak peaks ($2 \mathrm{e} \AA^{-3}$) very close to the Cu position at $(0.0,0.23,0.25)$. After the final refinement whose results are reported in Table 3 , the Cu atoms exhibited the largest anisotropic thermal factors, with the major axis along the b direction (Table 4). These results indicate that some
disorder and/or cation substitution could exist in the sample which would induce an additional distortion. The disorder is probably related to the trigonal twinning which affects mainly the Cu positions (see below). The additional distortion would be responsible for the few very weak reflections which were not taken into account by using the $C 2 / c$ cell.

Fig. 6. Projection of the structure of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ along the [0 T 0$]_{0}$ or [$\overline{1} 01]_{2}$ direction, showing isolated $[111]_{2}$ rows of PtO_{6} octahedra and CuO_{6} trigonal prisms. Only the $\mathrm{O}-\mathrm{O}$ bonds belonging to these cations are drawn: (a) all atoms with $0<y<1 / 2$ and (b) all atoms with $1 / 2<y<1$. Pt small black full circles; Cu small grey circles; $\operatorname{Sr}(1,2)$ large grey circles; $O(1,2,3)$ small open circles.

Description of the structure

A projection of the $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ structure on the $a_{0} c_{0}$ plane is shown in Fig. 5. The positional parameters together with the unit-cell dimensions determined from the X-ray powder data gave the interatomic distances and angles reported in Table 5. The Pt atoms are in the special positions $4(d)$ of the space group $C 2 / c$, at the symmetry center. The PtO_{6} octahedra are quite regular with $\mathrm{Pt}-\mathrm{O}$ distances ranging from 2.02 to $2.05 \AA$, in agreement with previously observed ${ }^{\mathrm{V}} \mathrm{Pt}^{4+}-\mathrm{O}$ distances. For example, the

${ }^{\mathrm{VI}} \mathrm{Pt}-\mathrm{O}$ distances in $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$ and in $M \mathrm{Pt}_{3} \mathrm{O}_{6}(M=$ $\mathrm{Mn}, \mathrm{Co}, \mathrm{Zn}, \mathrm{Mg}, \mathrm{Cd})$ vary between 2.00 and $2.03 \AA$ (Randall \& Katz, 1959; Schwartz et al., 1983). The ${ }^{1} \mathrm{Pt}-\mathrm{O}$ angles in the title compound are closer to $90^{\circ}\left[\Delta(\mathrm{O}-\mathrm{Pt}-\mathrm{O})<8.4^{\circ}\right]$ than in these other compounds $\left[\Delta(\mathrm{O}-\mathrm{Pt}-\mathrm{O})=11-13^{\circ}\right]$. The rigid nature of the PtO_{4} squares and PtO_{6} octahedra is a common feature of most Pt^{2+} or Pt^{4+} oxides.

The Cu cations are in the special positions $4(e)$ on the twofold axis. They are surrounded by six O atoms arranged as a distorted trigonal prism. Since they are displaced from the pseudo-threefold axis of the pseudo-trigonal cell $\left(a_{2}, b_{2}, c_{2}\right)$, towards one of the rectangular faces of the trigonal prism (Figs. 5, 6 and 7), there exist two types of $\mathrm{Cu}-\mathrm{O}$ distances: four ranging between 2.01 and $2.02 \AA$ and two at about $2.80 \AA$. These four shortest distances are still too long for ${ }^{1 \mathrm{~V}} \mathrm{Cu}^{2+}$ cations. An additional displacement (as indicated by the large thermal parameters of the Cu cations) of about $0.2 \AA$ towards the prism square would result in four shorter $\mathrm{Cu}-\mathrm{O}$ distances (1.99-2.00 \AA) which would be more reasonable for ${ }^{1 v} \mathrm{Cu}^{2+}$ cations.

The structure of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ contains edge-sharing chains of alternating PtO_{6} octahedra and CuO_{4} 'squares' along the $[111]_{2}$ pseudo-threefold axis (Fig. 6). The chains are linked together by $\mathrm{Sr}-\mathrm{O}$ bonds. The Sr cations are in eightfold coordination with the $\mathrm{Sr}-\mathrm{O}$ distances varying between 2.44 and $2.80 \AA$.

The size of the $4(e)$ sites is such that Pt^{2+} cations, if they existed, could be easily located in these sites. The square coordination with four short $\mathrm{Pt}-\mathrm{O}$ distances (1.94-2.00 \AA) would be quite reasonable for Pt^{2+} cations (Randall \& Katz, 1959; Schwartz \& Prewitt, 1984; Schwartz et al., 1983; Schwartz,

而

(b_{2})

Fig. 7. Projections of the $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ structure. Only the $\mathrm{Pt}-\mathrm{O}$ bonds belonging to the PtO_{6} octahedra are drawn. (a) Along the $[001]_{3}$ $\left(\leftrightarrow[111]_{2}\right.$ or $\left.\leftrightarrow[201]_{0}\right)$ direction, with the pseudo-threefold axis perpendicular to the projection plane, going through Pt cations. One trigonal prism around one of the Cu cations is drawn and the corresponding displacement is indicated by an arrow. Two pseudo-symmetric cells are outlined. (b) Along the [TT01]o direction. Only the atoms corresponding to two layers perpendicular to the projection are shown: (b_{1}) corresponds to the layers indicated by b_{1} in Fig. 6 and in (a), and (b_{2}) corresponds to the layers indicated by b_{2} in Fig. 6 and in (a). Pt small black full circles; Cu small grey circles; Sr(1,2) large grey circles; $\mathbf{O}(1,2,3)$ small open circles.

Parise, Prewitt \& Shannon, 1982). On the other hand, the Pt^{4+} cations of the $4(d)$ sites could be replaced either by Cu^{2+} cations with a small distortion and a contraction of the cation-O distances or by Bi^{5+} cations with a small increase of the site size. If the occupancy parameter of the $4(d)$ site indicated that the first substitution was not probable, the second is not easy to reveal because Bi and Pt cations have similar scattering factors. For this reason we checked the structural electroneutrality by calculating individual bond strengths.
The cation-anion bond strengths can be estimated from empirical formulae which are the extrapolation of the Pauling rules. The relationship of Brown \& Altermatt (1985) was used: $s=\exp \left[\left(d_{0}-d\right) / B\right]$, where s and d are the bond strength and bond length, respectively, and d_{0} and B are two constants for the given cation-anion distance. The sum of the bond strengths, $\sum_{i} s\left(\right.$ cation $\left.-\mathrm{O}_{i}\right)$, must be equal to the cation valence, and the sum of the bond strengths, $\sum_{j} s\left(\right.$ cation $\left._{j}-\mathrm{O}\right)$, must be equal to the O valence. The B constant was taken as 0.37 and the d_{0} distances used were $d_{0}\left(\mathrm{Pt}^{4+}-\mathrm{O}\right)=1.879, \quad d_{0}\left(\mathrm{Cu}^{2}-\mathrm{O}\right)=$ 1.679, $\quad d_{0}\left(\mathrm{Sr}^{2+}-\mathrm{O}\right)=2.118, \quad d_{0}\left(\mathrm{Pt}^{2+}-\mathrm{O}\right)=1.772$, $d_{0}\left(\mathrm{Bi}^{5+}-\mathrm{O}\right)=2.02$ and $d_{0}\left(\mathrm{Bi}^{3+}-\mathrm{O}\right)=2.094 \AA$. A good agreement is only obtained for the composition $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$, i.e. with only P on the $4(d)$ site and only Cu on the $4(e)$ sites. Calculated bond strengths and valences are given in Table 6.
The structure of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ described in monoclinic $C 2 / c$ can be related to that of other $M_{4} \mathrm{PtO}_{6}$ compounds:
(i) $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$ has $R \overline{3} c$ symmetry with hexagonal cell parameters $[a=9.740(2), \quad c=11.900(2) \AA]$, which are very close to those of the $\left(a_{3}, b_{3}, c_{3}\right)$ unit cell for $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$. The main difference between the structure of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ and that of $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$ concerns the stacking of octahedral PtO_{6} groups which takes place via the Cu sites in the former and via the Sr sites in the latter. The change in shape of this site (Cu or Sr) corresponds to a change in symmetry and consequently different crystal symmetries are obtained. In the structure of $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$ the Sr cations are surrounded by regular trigonal O prisms (Randall \& Katz, 1959; Ben-Dor et al., 1983).
(ii) $\mathrm{Ba}_{4} \mathrm{PtO}_{6}$ is isostructural with the previous compound [$R \overline{3} c, a=10.2102$ (2), $c=12.6172$ (2) $\AA]$. The BaO_{6} trigonal prisms are also quite regular (Wilkinson \& Cheetham, 1989). During the course of this study, Wilkinson and coworkers pointed out the close relationship between $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ and $\mathrm{Ba}_{4} \mathrm{PtO}_{6}$ (Wilkinson \& Cheetham, 1989; Wilkinson, Cheetham, Kunnmann \& Kvick, 1991).
(iii) $\mathrm{Ca}_{4} \mathrm{PtO}_{6}$ has been reported to exist with two polymorphs, one trigonal ($R \overline{3} c, a \simeq 9.18, \quad c \simeq$ $11.25 \AA$) (McDaniel, 1972) and one orthorhombic ($\mathrm{Cmcm}, a=9.18, b=9.24, c=6.50 \AA$) (Сzaya, 1970).

The latter cell is similar to the monoclinic (a_{0}, b_{0}, c_{0}) cell of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$.

The space group $\mathrm{C} 2 / \mathrm{c}$ of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ is a sub-group of Cmcm , which itself is derived from the space group $R \overline{3} c$ with an adequate cell transformation. These examples show the close structural relationships among the $M_{4} \mathrm{PtO}_{6}$ compounds. The pseudo-lattices are related to the unit cell with the highest symmetry by means of the transformation matrices given in Table 2.

As shown in the $[001]_{3}$ projection in real space (see Fig. 7a), the main difference between the monoclinic $C 2 / c$ structure of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ and the $R \overline{3} c$ structure is the position of the Cu cations, which are displaced in the former compound by $0.41 \AA$ towards one face of the CuO_{6} trigonal prism and nearly have a square coordination (see Fig. 7a). When, in the space group $C 2 / c$, isotropic thermal factors were used, weak peaks at the position $(0.0,0.23,0.25)$ close to the center of the trigonal prism were observed in difference Fourier maps. As rhombohedral twinning mainly affects the Cu position, these peaks were due to the different twin individuals. Consequently, the refinement would have resulted in a Cu position which is too close to the center of the trigonal prism, corresponding to an underbonded Cu cation. Calculated Cu valences for the Cu cation either placed at the center of the trigonal prism or at the center of the 'square' face are $1.43+$ and $1.77+$, respectively. Unlike the Sr^{2+} cations, the Cu^{2+} cations prefer the 'square' coordination, so that the $C 2 / c$ symmetry is intrinsically due to the presence of Cu in $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ and the trigonal symmetry is intrinsic to the $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$ compound.

Usually the crystals of $\mathrm{Sr}_{3} \mathrm{CuPtO}_{6}$ have a hexagonal platelet-like habit corresponding to the (a_{3}, b_{3}, c_{3}) pseudo-rhombohedral lattice. This indicates that this lattice, which is responsible for twinning, also controls the crystal morphology. Nearly the same crystal shape is obtained for the $R \overline{3} c \quad \mathrm{Ca}_{4} \mathrm{PtO}_{6}$ compound (Ohsato, Sugimura \& Kageyama, 1981).

References

Akimitsu, J., Yamazaki, A., Sawa, H. \& Fujiki, H. (1988). Jpn J. Appl. Phys. 27, L2080.

Ben-Dor, L., Suss, J. T. \& Cohen, S. (1983). J. Cryst. Growth, 64, 395-396.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Chamberland, B. L. \& Silverman, S. (1979). J. Less Common Met. 65, P41-P48.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
CZaya, Z. (1970). Z. Anorg. Allg. Chem. 375, 61-64.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Friedel, G. (1964). Leçons de Cristallographie. Paris: Blanchard. Ikeda, Y., Ito, H., Shimomura, S., Oue, Y., Inaba, K., Hiroi, K. \& Takano, M. (1989). Physica, C159, 93-104.

McDaniel, C. L. (1972). J. Am. Ceram. Soc. 55, 426-427.
Maeda, H., Tanaka, Y., Fukutomi, M. \& Asano, T. (1988). Jpn J. Appl. Phys. 27, L209.

Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J. \& Raveau. B. (1987). Z. Phys. B68, 421-424.
Ohsato, H., Sugimura, T. \& Kageyama, K. (1981). J. Cryst. Growth, 51, 1-5.
Randall, J. J. \& Katz, L. (1959). Acta Cryst. 12, 519-521.
Randall, J. J. \& Ward, R. (1969). J. Am. Chem. Soc. 81, 2629-2631.
Roth, R. S., Rawn, C. J. \& Bendersky, L. A. (1990). J. Mater. Res. 5 (1), 46-52.
Roth, R. S., Rawn, C. J., Burton, B. P. \& Beech, F. (1990a). J. Res. NIST, March- April.
Roth, R. S., Rawn, C. J., Burton, B. P. \& Beech, F. (1990b). J. Res. NIST, May-June.
Saggio, J. A., Sujata, K., Hahn, J., Hwu, S. J., Poeppelmeier, K. R. \& Mason, T. O. (1989). J. Am. Ceram. Soc. 72(5), 849-853.

Schneider, S. J. \& McDaniel, C. L. (1969). J. Am. Ceram. Soc. 52(9), 518-519.
Schwartz, K. B., Parise, J. B., Prewitt, C. T. \& Shannon, R. D. (1982). Acta Cryst. B38, 2109-2116.

Schwartz, K. B., Parise, J. B., Prewitt, C. T. \& Shannon, R. D. (1983). Acta Cryst. B39, 217-226.

Schwartz, K. B. \& Prewitt, C. T. (1984). J. Phys. Chem. Solids, 45(1), 1-21, and references therein.
Schwartz, K. B., Prewitt, C. T., Shannon, R. D., Corliss, L. M., Hastings, J. M. \& Chamberlani, B. L. (1982). Acta Cryst. B38, 363-368.
Strobel, P., Kelleher, K., Holtzberg, F. \& Worthington, T. (1988). Physica, C156, 343440.

Tu, H. Y., Hodeau, J. L., Bordet, P., Chandrashekhar, G. V., Fournier, T., Strobel, P. \& Marezio, M. (1990). Acta Cryst. A46, C-336.
Wilkinson, A. P. \& Cheetham, A. K. (1989). Acta Cryst. C45, 1672-1674.
Wilkinson, A. P., Cheetham, A. K., Kunnmann, W. \& Kvick, A. (1991). In the press.

Acta Cryst. (1992). B48, 11-16

Structure Refinement of $\mathrm{Al}_{3} \mathrm{Zr}$ using Single-Crystal X-ray Diffraction, Powder Neutron Diffraction and CBED

By Y. MA
Department of Physics, University of Oslo, 1048 Blindern, 0316 Oslo 3, Norway
C. Rømming
Department of Chemistry, University of Oslo, 1033 Blindern, 0315 Oslo 3, Norway
B. Lebech
Riso National Laboratory, DK-4000 Roskilde, Denmark
and J. Gjgnnes and J. Tafte
Department of Physics, University of Oslo, 1048 Blindern, 0316 Oslo 3, Norway

(Received 27 June 1991; accepted 2 September 1991)

Abstract

The structure of the intermetallic compound $\mathrm{Al}_{3} \mathrm{Zr}$ has been studied at 293 K by single-crystal X-ray diffraction (Mo Ka radiation, $\lambda=0.71069 \AA$), powder neutron diffraction $\{\lambda[\mathrm{Ge}(711)]=1.0867 \AA\}$ and convergent-beam electron diffraction (CBED) ($200 \mathrm{keV}, \lambda=0.0251 \AA$). The structure of $\mathrm{Al}_{3} \mathrm{Zr}$ comprises four close-packed metal sub-lattices and has the tetragonal space group $14 / \mathrm{mmm}$ with $a=$ 3.9993 (5), $c=17.283$ (2) $\AA, V=276.43$ (6) $\AA^{3}, Z=$ $4, D_{x}=4.136 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=45.11 \mathrm{~cm}^{-1}$. The new z coordinates of four Al and four Zr atoms on the e position $\left[z_{\mathrm{Al}(e)}\right.$ and $\left.z_{\mathrm{Z}(e)}\right]$ were determined by singlecrystal X-ray diffraction: $z_{\text {Al(e) }}=0.37498$ (5) and

$z_{Z_{\text {r }}(e)}=0.11886$ (1). The results from single-crystal X-ray diffraction were confirmed by powder neutron diffraction, although they differ considerably from previously reported data [Brauer (1939). Z. Anorg. Chem. 242, 1-22] and differ in parts from the CBED work. The structure was refined to $R=0.016, w R=$ 0.021 for 304 unique observed reflections for singlecrystal X-ray diffraction, while it was refined to $R=$ $0.064, w R=0.095$ for 43 resolved peaks for powder neutron diffraction. A large anisotropic effect for the temperature factor of the Al atoms on the e position [Al(e)] was found by single-crystal X-ray diffraction, which may have both thermal and non-thermal origins. For the newly proposed CBED technique, a wide cone of incident rays was used to obtain inten-

[^0]: * Permanent address: Shanghai Institute of Ceramics, Academia Sinica, 865 Chang-Ning Road, Shanghai 200050, People's Republic of China.
 † Also CRTBT, CNRS, 166X, 38042 Grenoble CEDEX, France. \ddagger Also AT\&T Bell Laboratories, Murray Hill, NJ 07974, USA.

